TELEDYNE'S MULTI-USER SYSTEM FOR EARTH SENSING (MUSES) **JACIE - April 14, 2016** ### **Parent Company Teledyne Technologies** - Headquartered in Thousand Oaks, California with locations across the globe - \$2.3B in 2015 revenues; over 9,300 employees - Teledyne Technologies is a leading provider of sophisticated instrumentation, digital imaging products and software, aerospace and defense electronics, and engineered systems. For more information, visit Teledyne Technologies' website at www.teledyne.com. ### **Teledyne Technologies** **Four Segments – \$2.3B 2015** Aerospace and **Defense Electronics** Instrumentation **Digital Imaging** # Multi-User System for Earth Sensing (MUSES) - **► MUSES Platform** - ► Located on ELC 4 - **▶** Inertially stabilized - ► Precise pointing and Earth surface target tracking - ► Up to 4 robotically installed instruments - ► Total data downlink ~225 GB/day - ► Teledyne owns the platform, determines pointing schedules, and retains data rights in cooperation with partners - ► Instruments launched in "soft stowage" # Earth Observation From the ISS – Why It Works - ► Coverage of ~90% of populated Earth - ► Coverage of ~100% of ocean shipping lanes and major navigational ports - ► Coverage of 100% of tropics and equatorial region - ► 3-5 day average cadence - Sophisticated spacecraft bus with required resources - ► Upgrade and exchange of instruments as technology and/or markets evolve - Traditional barriers to entry minimized ### Why the ISS Works for Teledyne - ▶ 60 years of corporate experience working NASA programs from Explorer 1 to the new Space Launch System - ► Extensive experience with ISS payloads - Designed and manufactured ISS systems and hardware (Environmental Controls and Life Support Systems, Logistics Carriers, Flight Releasable Attachment Mechanisms) - Designed and built payload hardware (Microgravity Science Glovebox, Microgravity Science Research Rack) - Prime contractor for the Payload Operations and Integration Center at Marshall Space Flight Center - ► Rich corporate history in design and development of sensors (Hubble and James Web Space Telescopes, Mars Science Laboratory Curiosity) ### **Teledyne MUSES Commercial Products** #### Turn-Key Instrument Missions - Development, integration, and operations. - Negotiable Template: 30-month engagement;18-month integration,12-month flight on MUSES (6 month for primary) - TRL maturation, prove-out of instrument design, early data products prior to free-flyer missions. #### ▶ Commercial Data Sales - Archive, tasking, subscription - From one image to the whole data pipeline - Non-exclusive, limited exclusivity, exclusivity options #### Analytics and Decision Information Products - Commercial, scientific, humanitarian value - Collaborative Research and Development - Partnership and mutually-beneficial capacity building, to address new markets and new opportunities ### **MUSES Location on ELC-4** ## Platform Capabilities | Pointing Knowledge | ≤ 30 arc seconds (~ 60 m on ground from 400 km altitude) | | |--------------------------------|---|--| | Field of Regard | 5° outboard cross-track | | | | 45° inboard cross-track | | | | +/- 25° along-track | | | Star Tracker | Sodern SED26 | | | Inertial Measurement Unit | Honeywell Miniature Inertial Measurement Unit (MIMU) | | | Precision Time | Sourced from the ISS GPS, ± 250 usec to MUSES instruments | | | Location knowledge | Sourced from the ISS GPS, ± 50 meters, RMS | | | Orbit | 51.6° Inclination, 400 km altitude ± 5% (nominal) | | | Data Processing | Linux Server on-board ISS with redundant 8 TB storage | | | Daily Downlink Capacity | 225 GB | | ### **MUSES Imaging Opportunity Analysis** ## MUSES Imaging Opportunities: ≥ 30° Solar Elevation Annual MUSES Imaging Opportunities Solar Elevation ≥ 30°, Off Nadir ≤ 25° ## **DLR Earth Sensing Imaging Spectrometer** (**DESIS-30**) ► Teledyne & DLR, the German Space Centre, have partnered for a visible to near-IR imaging spectrometer for MUSES | Characteristic | DESIS-30 Features | |--------------------------------|---| | Ground Sampling Distance | 30 m @ 400 km altitude | | Ground Swath | 30 km @ 400 km altitude | | Spectral Range | 400 nm – 1000 nm | | Spectral Bins | Measured: 235 @ 2.55 nm Programmable binning on-orbit | | Quantization | 12 bits | | Signal to Noise Ratio @ 550 nm | 205:1 sampled at 2.55 nm
406:1 binned to 10.2 nm | | On-board calibration | Dark Field for DSNU
LED Array for PRNU | | Independent Pointing | Pointing Unit
±15° Along Track | | Independent Time and Location | On-board GPS | ## **DESIS Internal Design** ### **DESIS Signal to Noise (SNR)** ### **Current MUSES/DESIS Status** #### **MUSES** - Final closeout of pre-launch verifications - Performing ground testing and performance characterizations - Manifested for launch on SpaceX-11 - Expect SpaceX-11 launch by Q1, 2017 #### **DESIS** - Critical Design Review in Berlin in May 2016 - Planned launch in Q2, 2017 - ► Commission MUSES and DESIS during Q2 2017 # Major Agreements, Partnerships, and Teaming | Name | Туре | Summary | |--------|---------------------------------------|---| | NASA | Enabling,
Science | Cooperative Agreement (NNJ12GA21A) with the ISS Program Office for MUSES \$15 M data purchase agreement | | DLR | Enabling,
Science,
Humanitarian | Implementing agreement for the DLR Earth Sensing Imaging Spectrometer (DESIS) Covers the design, development, and operation of the DESIS instrument Provision of imagery to DLR for scientific and humanitarian purposes Bi-lateral cooperation and sharing of all DESIS calibration data TBE licensing of DESIS image processing algorithms and software | | | Science | Alabama Remote Sensing Consortium (ARSC) UA Huntsville, Alabama A&M University, Auburn University Provision of imagery for research & instruction ARSC will support periodic vicarious calibration activities | | GeoCue | Commercial | Cloud-based image process and archive | ### **Subsequent Presentations** ### Janja Avbelj, PhD DLR Remote Sensing Technology Institute "Image products from the new hyperspectral sensor DESIS" ## Lewis Graham GeoCue Group "Building High Performance Processing Systems in Amazon Web Services" ## Ray Perkins Teledyne Brown Engineering "Imaging Spectroscopy Applications Using the DESIS Hyperspectral Instrument on MUSES" www.teledyne.com